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This paper investigates a projection method with cubic 8 -splines for
solving two-dimensional Fredholm integral equations of the second
kind that arise in scattering theory. Emphasis is placed on the rela-
tionship between collogation and Galerkin methods. A mesh grading
procedure based on an equidistribution of the nodal points with respect
to a measura that combines both the arc length and curvatures is
investigated. A test of the numerical procedures is provided by solving
the Faddeev integral equation for a model three-boson problem at both
bound-state and zero scattering energies.  © 1994 Academic Press, Inc.

1. INTRODUCTION

A well-known multidimensional integral equation of
scattering theory is found in the work of Faddeev [1 ] on the
quantum three-body probiem. Other integral equation for-
mulations of the three-body problem have been developed,
for example, by Alt, Grassberger and Sandhas [27. Over the
years considerable effort has been devoted to the accurate
numerical solution of these equations, and among the many
numerical techniques are those based on product integra-
tion [3], Padé approximation [47, variational calculations
{5), and projection methods based on cubic spline
approximation. Cubic splines have been used to solve one-
dimensional integral equations that arise in scattering
theory (6, 7], including Faddeev-type integral equations
[8-107, as well as partial integrodifferential equations of the
Faddeev type [11-13].

The aim of this paper is to investigate projection methods
with cubic B-spline approximation to solve two-dimen-
sional integral equations that arise in scattering theory and,
in particular, the Faddeev integral equations. Two weli-
know examples of projection methods are the Galerkin and
collovation methods. The Galerkin method requires the
evaluation of higher dimensional integrals. For this reason
many of the applications of projection methods for solving
integral equations of scattering theory make use of the
collocation method rather than the Galerkin method. Sim-
pler approaches to the ones described above, such as those

based on the Nystrom method, may also provide a practical
means of solving the integral equations of scattering theory.
Indeed, it is possible to construct a Gauss quadrature that
is exact for cubic splings and use this quadrature in the
Nystrém method [14]. An advantage of the Galerkin and
collocation methods, however, is that it shouid be possible
to obtain accurate numerical solutions with a smaller num-
ber of basis functions. This feature is particularly relevant
when solving multidimensional integral equations.

Section 2 gives a mathematical formulation of the cubic
spline-projection method for solving two-dimensional
integral equations. Section 3 describes an adaptive mesh
grading technique. Since the cubic splines can be con-
structed on nonuniformly spaced points, mesh grading may
be viewed as an integral part of the cubic spline-projection
method. A brief description of the Faddeev integral equa-
tions i1s given in Section 3. Here it is not the intention to
present new results on the three-body problem, but rather
to use the Faddeev integral equation as an archetypical
equation from scatiering theory on which to test the
numerical method. The numerical results are given in
Section 5 and conclusions in Section 6.

2. APPROXIMATION METHOD

This section describes the numerical procedure for
solving two-dimensional integral equations of the second
kind,

(f+A)f=2g (2.1)
whete f, g€ Cla, b1 x Cle,d]and &, X : [a, b] x [e,d] >
fa, b]x [, d]. Here .# is the identity operator and " is the
integral kernel defined by

b pd .
Hf(s, t)= j [ K(s, 0,8, U} f(s ) de' ds’. (2.2)
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In what follows it will be assumed that the semi-infinite
integrals that arise in scattering theory can be mapped onto
a finite interval so that a, b, ¢, and d are finite. A particular
mapping will be discussed in the following section.

The cubic B-splines on se[a, b] are constructed as
follows {15, 16]: The interval {a, #] is partitioned by m
nodal points {s;]7 ,, where a=s, <s,< - <5, =5
Additional points are placed at the ends of this interval,
namely, s_,<5_ <5055, and 5, <5, 1SSy 2S84 3-
Define

-1
(s;—~s;_ )7,
0, otherwise.

8 <S5,

B0 = (23)

The B-splines of order ! (degree /— 1} are generated by the
stable iteraitve method of Cox [16]

B 5y = ST Bni )~ i) By )

=8

(2.4)

Note that the index on the cubic B-splines runs from
i=2, .., m+ 3. A convenient notation is B,, ,(s) = B!}, , ,(s)
to denote the cubic B-spline which is nonzero over the
interval (s;_,,s5;,,) so that the index now runs from
i=0,.,m+1.

A similar procedure is used to construct cubic B-splines
on te[e, d]. The interval is partitioned by » nodal points
such that e=t,<t,< --- <t,=d, and on this partition,
together with the extended points r_,<7_, <1,<1¢, and
LSt 11,251, .3 is constructed the cubic B-splines
(B, (n}nd.

The next step is to define the approximation operator &,

where
m+1 a+1

Ffis,)=3Y Y A, ,;B..s)B, (1)

=0 j=0

(2.9)

The operator & maps the bivariate function fonto a tensor
product of cubic B-splines &f The bicubic spline
approximation has C? continuity over the rectangle
[a, b] % [c, d]. Since the B-splines have local support it
follows that the value of ¥f(s, t) depends only on the
function f{s, ¢} in a small neighborhood of (s, 1).

In the present context & f approximates the (unknown)
solution f of equation (2.1). Replace fby & fin Eq. (2.1) and
construct a residual function

m+1l A+l
R=3 Y di;(F+H)B,B, -z

=0 j=0

{2.6)

The coefficients {4, ;} are now determined from a projec-
tion method [17]. Let (¥, @) denote the usual inper
product

b pd
(¥, ©) =f j W(s, 1) Os, 1) dt ds.

2 [

2N

Furthermore, let {¥,} be chosen set of (m+2)x (n+2)
test functions. The coefficients {4, ;} are obtained by solving
the (rm+ 2) x (# + 2} linear equations

(¥,,R)=0, p=0,.,[(m+2)x(n+2)~11(28)

In this paper two examples will be considered, namely,

(iy ¥,=8, B, ;, which is the Galerkin method, and
(i) ¥,=0(s-u}dé(t~v,), where u,ela b] and
v;€ [c, d], which is the method of collocation.

In what follows it is convenient to define the index
notation p=i(n+2)+ jand ¢ = k{r +2) +/ Also the coef-
ficients {4, ;} are to be arranged in the form of an extended
column vector

A= (;‘-0,0, ;Lo,n ey ’10,"4- 1 ;'I‘O’ sy £m+1.n+ 1)T- (29

In the Galerkin approach the column vector A is a
solution of the matrix equation

(M® +N%) 1% =¢. (2.10)
Here e is the column vector with elements
b ad
e, =j j B,(5) B, () g(s, hdtds.  (2.11)

The matrix NS has elements defined by four-dimensional
moment integrals;

Ngc,:j: fj: f B (5) Bo (1) K(s, £, 5", £')

x B, {s')B, (') dr ds dr ds. (2.12)
The matrix MY can be written
MgU=P,-';C 1 (2.13)
where
¥
Piu=| B5)B,us)ds (214)
and
d
Oui=| Buyt) Boi(D) (2.15)

Matrices P and Q are banded with elements that can be
evaluated explicitly. In the case of uniformly spaced nodal
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points, with spacing #, these matrices are completely
specified from a 4 x 4 matrix

20 19 60 I

1 129 1188 933 60
806404 | 60 933 1188 129
1 60 129 20

(2.16)

In the collocation approach the column vector A€ is a
solution of the matrix equation

(M 4+ N i =g, (2.17)

where
g, = glu;, v)), (2.18)
ME,U= m.k(ui) Bn,l(vj.)’ (2.19)

and matrix N has elements defined by two-dimensional
moment integrals

b ~d
NS, = [ Kl v 5.0 Bosls) B (D dr s, (220)

The collocation method has some freedom in the choice
of the collocation points {u;}7_%' and {v,}71,. In practice
the placement of the collocation points is restricted by the
Schoenberg—Whithney theorem [ 18, p. 200, Theorem X1 ]
which requires that u,e(s;_,,5,,,) and v,e(t,_,. 1,,,)
The choice adopted in the present paper is to place one
collocation point at each nodal point in the rectangle
[a, b]x [c, d]. Additional collocation points are placed at
the midpoint of each end interval. Thus

u0=sl! ul=%(sl+52)!
w=s, i=2 . m—1, (221)
um=%(sm+sm+l)a Uy = S
and
vo=1,, ”1:%(11"'52),
n=t, =2 .n—1, (222}

1
Un=5“n+tn+1)= Upo1 =1,

The homogeneous form [19] of Eq. (2.1) is the integral
equation
nb=—A"D, (2.23)

where @eCla, b]x Clc,d] is an eigenfunction corre-
sponding to the eigenvalue 5. In general there will be an

infinite sequence {n,} and corresponding {@;} that satisfy
Eqg. (2.23). Using the approximation

m41 n+1
FP(s, ty=Y Y 1,,B,.(s)B, (1) (2.24)
i=0 =0
leads to the generalized eigenvalue problem
FMA= —NJj, (2.25)

where matrices M and N correspond to ¢ither the Galerkin
or collocation methods. The (m + 2) x (n + 2) eigenvalues
{fi;} may be considered an approximation of the sequence
{1}, and {#®,} the corresponding eigenfunctions.

The integrals in Egs. (2.11), (2.12), and (2.20} are
evaluated using a standard Gauss-Legendre quadrature
formula (201.

3. ADAFPTIVE MESH GRADING TECHNIQUE

This section describes a technique for choosing the
position of the m x n points on the rectangle [a, 6] x [¢, d].
A simple choice, which is appropriate if the solution of
the integral equation is a slowly varying function of the
independent variables s and ¢, is to space the grid points
uniformly throughout the entire rectangular region. On the
other hand, if the solution is not slowly varying in some
region of the grid then it may be possible to improve the
accuracy of the numerical solution by concentrating some of
the grid points in this region. A procedure that redistributes
a given number of grid points is usually referred to as an
adaptive mesh grading (AMG). The approach used in this
paper is to equi-distribute the nodal points with respect to
a measure that combines both the arc length and the
curvatures of the solntion function. This approach is taken
from the AMG procedure for solving one-dimensional
integral equations investigated by Eyre and Wright {21].
A description of this procedure will now be given,

Let z(sye C%{a, b] be the cubic B-spline approximation
defined on the partitiona =5, <s, < --- <5, =b. Let

a=[" [1+EP1"2as (a.1)

Si—1

o=[" U+ P b

Si—1

(3.2)

be the arc length and curvature of z over the subinterval
[s;. 1. s;]. The coefficients {a,} and {c;} are normalised so
that

(3.2)

Z i&;= z C,-zl.
i=2 i=2
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Now define

ki=(1—-w)a,+wc, (3.3)

where w is a weighting factor. The idea behind the AMG
technique is to redistribute the points {s,} with respect to
this weighted combination of the arc length and curvature.

In order to damp extreme values a weighted means quan-
tity is introduced

B:=3(2k; +ks),

Bi= %(ki—l + 2k5+ ki+]);
Igm = %(km~l + 2km)

i=3,..m—1, (34)

The measure of arc length and curvatures is obtained by
integrating f,

I= i B, (3.5)
i=2

with I'; =0. The values obtained from I',= I'(s,) are now
used in inverse form, s, = s{I";). Let :
{

Irr= I,

Pom—13 "

(3.6)

The new nodal points

§;i=s(I" ") (3.7
correspond to an equidistribution of the quantities §, over
the m — 1 subintervals.

The above procedure is repeated until the new nodal
points {§;} have converged. Convergence is obtained when

] m _— 1/2

i=2

(3.8)

is less than some specified tolerance. Here f§ is the average .

value of {§,}.

Once a converged set of new points has been constructed
the integral equation is again solved and the procedure
repeated until the solution function does not change
significantly. '

4. FADDEEY INTEGRAL EQUATION

This section gives a brief description of the Faddeev
integral equations. The notation of Kloet and Tjon [4] will
be followed. Let p and g be magnitudes of the Jacobi

momentum variables. For identical particles the S-wave
Faddeev integral equation becomes

' '

ipt

2n Biq, qi)
Uip, gy =—— |
\/j qq; " Ala, 49

(0, /P al — @ s— g )W)
: 16 = Big, 97}
— ql dq.’ fdpft
\/5 q "'0 '[A(q, q) g
- - U a’ ’
x(p, /P +4g 2—‘12;3—112)—,2'2'—‘1'_)—15,

. + gf2
(4.1)

where Alg, ) =12q—¢'1//3, Bl 4} =124 +71/\/3, and
E is the complex three-body energy. The two-particle
t-matrix satisfies a Lippmann—Schwinger integral equation,

"l "
, . = p"tdp
t(p,p;a)=v(p,p)—4ﬂf =

o p—¢&

xv(p, p")Up", 5 8), (4.2)

where ¢ is the complex two-body energy. It will be assumed
that the potential v(p, p’) can support a single two-body
bound state with binding e¢nergy b, where Re(b) > 0. In this
case the bound state wavefunction ¥ is given by

$(p)
= 4.3
wip) 7 +b) (4.3)
where ¢ satisfies the homogeneous integral equation
o= —an [ L s gy )
p)= 0p,1+bUPaP P -
The function ¢ contains a bound state pole at e= —b.
Thus
poy_Hppie)
Hp, pie)=—p——, :
(P, ps0) == (45)

where [ is a function that does not contain this pole. In order
to compute the solution of Eq. {(4.1) it is necessary to take
this singularity into account. Define

Qp, 9)=q"U(p, q). (4.6)

At scattering threshold the three-body energy is £E= —b.
The integral in the inhomogeneous term of Eq. (4.1) can be
evaluated so that Eq. (4.6) becomes
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(5

Jg-o 4 “aigq)
Q2(p', q')
, r2+ 22 2,—b— 2 .
X(p P q q - )p12+qr2+b
7 4.7)
The scattering length, =, is given by
Q0,0
ES _E_._(_.__.l_ (4‘8)
8 ¢(0)

Bound states of the three-body system are described by
eigenfunctions @ of the homogeneous integral equation

n®(p, q)= —:l/% J:o q dq JM ” p dp't

Atg a’)

x(p,\/pP+a7—q%5—¢%)

?(p,q')
Piqt-E
(4.9)

corresponding to the cigenvalue n = 1. Only the eigenvalue
# = 1 corresponds to a solution of the Schrodinger equation.
This eigenvalue occurs at discrete values of E= — B,, where
B is a {positive) three-body binding energy and / labeis the
state.

5. NUMERICAL RESULTS

In order to apply the spline—Galerkin method it is con-
venient (0 map the momentum variables p and g onto a
finite interval. Let dimensionless variables s and ¢ be defined
by the mapping

(1), (i
P= 1—5 ’ 9= l_ta

where { and v are constant parameters. Both s, te[ -1, 1]
and at the midpoint of the interval p={ and g=v. The
parameters { and v are chosen so that the solution of the
integral equation is distributed in a reasonable way over the
square [—1,1]x[—1,1]. Since this mapping will also
-redistribute the nodal points in the p and g variables it may
be viewed as a rough type of mesh grading. A more refined
mesh grading procedure was described in Section 3, In the
problems considered below a reasonable choice for these
parametersis {=v=1fm~!.

The two-body interaction is chosen to be a non-separable
potential given by the sum of Yukawa functions

(5.1)

g HRT g Har

vir)=V,

(5.2)

A
r r’

TABLE ]

Potential Parameters

Potential ~ Ve{MeV.-fm)  V,(MeV.-fm) up(fm™') p,(fm~")
Delves Q 49.7616 % 1.58 0 {1.58)~!
MT-III 1438.720 626.885 in 1.55
MT-V 1438.4812 570.3316 i 1.55

where V' and ¥, are positive. Three cases are considered:
the attractive Delves [22] potential, and the two-term
Maiftiet-Tijon 23] (MT-II1 and MT-V) potentials. The
potential parameters arc chosen to agree with Ref, [11] and
are tabulated in Table 1 for convenience. (In all calculations
#%/m = 41.468 MeV - im™) The two-term potentials have a
strong repuision and therefore more structure than the
single term attractive Delves potential.

The discussion of the two-body subsystem will be
restricted to a single partial wave with angular momentum
1= 0. In this case the Fourier transform of the local potential
v{r)is

1 o
o(p PV =53 | dolpr)olpT)ulr) P, (53)

where J, is the spherical Bessel function of the first kind of
order 0. The resulting Lippmann—Schwinger integral equa-
tion (4.2) is solved numerically using a degenerate kernel
method [247. For this purpose a sufficiently fine mesh is
used so that the error in the two-body r-matrix does not
contribute significantly to the error in the three-body
calculations.

Tables I and 1II show numerical results for the three-

TABLE i1

Three Boson Binding Energies in Mega Electron Volts
for the Delves Potential

B, B,
(n+2)? (C} (G) (C} (G)
36 58014 50.381 — 8.905
49 50.867 50.413 — 8.760
4 50.715 50,494 7905 8.515
81 50.610 50.510 8.270 8.630
100 50.564 50.512 8.574 8.650
121 50.542 50.512 8.664 8.650
144 50.532 8.680
169 50,527 8681
196 50.521 8.672
225 50.519 8.669
256 50.519 8.665
289 50.517 8.662
324 50.516 8.660
Friar et al, [11] 50.5093 8.652
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TABLE III

Three Boson Binding Energy in Mega Electron Volts
for the MT-V Potential

{n+2) (C) (G

36 7.523 7.597

49 6.926 7.563

64 7.655 7541

81 7.641 7.526

100 7.590 7.548

121 7.565 7.540
144 7.554
169 7.550
196 7.546
225 7.543
256 7.542
289 7.541
324 7.540

Friar et af. [11] 7.540

body binding ¢nergies. In a three-boson system the Delves
potential supports twe bound states. The most accurately
known values have been obtained by Friar er af. [117; the
ground state cnergy is B, =50.5093 MeV and the [irst
excited state energy is B, =8.652 MeV. Numerical results
obtained using both the collocation (C) and Galerkin {G)
methods show a monotonic convergence towards these
values. For a given mesh size the most accurate results are
obtained using the Galerkin method. The value in Ref [11]
for the MT-V potential is B=7.540 MeV. In this case the
convergence shown in Table IIT does not appear to be
monotonic. Nevertheless it can be seen that the most
accurate results are again obtained using the Galerkin
method.

Table IV shows numerical results for the three-boson
scattering length «. For the MT-III potential Payne er al.

TABLE IV
Scattering Length « per Ferntometer for the MT-III Potential

(n+2) <) (G)
36 100.6 61.3
49 583 41.2
64 359 311
81 33.2 28.7
100 313 248
121 303
144 29.7
169 292
196 288
225 28.5
256 28.2
Payne er g [12] 26.03

[12] give a=26.03 fm'. Both the collocation (C) and
Galerkin (G) methods indicate numerical convergence
towards this value, i.c., the error decreases as n increases to
within about 8 % of the reference solution.

As a further check on the algorithm the scattering length
has also been calculated for the MT-V potential in Table I
For n=16 the collocation method gives a value of
o=3511m"! which compares reasonably well with the
result given by Paynetal. of =349 +02 fm~".

Consider the solution of Eq.(4.7) over the square
[-1,1}x[—1,11. Along the edges s=1 and r=1 the
solution £2 — 0. The nodal points may therefore be expected
to be equidistributed with respect to the weighted combina-
tion of arc length and curvatures of the approximate bicubic
spline solution 2,. Along the edges s=—1 and r=—1,
however, the situation is different because the approximate
solution £, is expected to exhibit some structure. Along
these edges an AMG procedure described in Section 3 can
be used to better distribute the nodal points. Because the
rectangular grid is uniquely defined by the set of points
{s,, ¢} it is sufficient to construct the nodal points {s,} and
{#,}. The new unodal points are constructed as follows: An
AMG procedure is applied to the spline functions z,(s) =
2,(p(s), 0) and z,(r) = 2,(0, g(1)). The points {5} and {{,}
obtained from this procedure are now the new grid points
(5., {,). Also ¢, and o, are defined by Eq. (3.8) for the spline
functions z, and z,, respectively. As pointed out in
Ref. [21] a blind application of the AMG technique is not
advisable because not all tolerance values for ¢ lead to a
converged solution. A careful choice of the tolerance values
is therefore required. The nodal points that lie outside the
square [ —1, 1] x[—1, 1] do not affect the bicubic spline
interpolation and are left unchanged by the AMG proce-
dure.

In order to test the accuracy of numerical solution on a
coarse grid the result obtained from the collocation method
using a fine mesh with #=12 was used as a reference

solution. An estimate of the global error in the numerical

solution Q,(p(s), g(1)} is obtained from the L2-norm of the

error function

4Q2=0,-Q_;, (54)

TABLEV

Collocation Solution with {n + 2)* =49 Using
w =20 and I Iterates of the AMG

I & 4, 7, a2

0 58.3 23.4 4.6(—2} 49(—2)
1 230 159 47(—2) 4.8(-2)
2 344 17.0 43(-2) 37(—2)
3 269 17.3 4.8(—2}) 48(-2)
4 356 17.1 44(-2) 48(-2)
5 270 17.0 4.7(—~2}) 438(-2)
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TABLE VI

Collocation Solution with (n 4 2)* = 49 Using
w=10.25 and [ Iterates of the AMG

TABLE VIIl

Collocation Solution with (n+ 2)* =64 Using
@ =10.25 and [ Iterates of the AMG

I a 42, o, oy

0 58.3 234 42(-2)  42(-2)
1 368 16.7 43(-2)  41(-2)
2 41.4 170 42(=2)  42(-2)
3 372 16.7 43(-2)  39(-2)
4 390 17.0 38(-2)  38(-2)
5 378 17.2 40(=2)  31-2

! x 4y, ay Ty

0 359 16.3 30(~2) 30(-2)
1 290 12.0 29(-2) 30(-2}
2 306 1.8 29(-2) 29(—2}
3 302 1.7 2.8(--2) 29(—2)
4 30.5 10.6 28(—2) 30(—-2)
5 30.7 10.5 27(-2) 29(-2)

where 2, is the reference solution. The L*-norm is defined
by

lael= [ 14 a0 dsd (55)

Tables V and VI show results for the AMG procedure
using the collocation method with {n+2)*=49, while
Tables VI1 and VIII show results for (n+2)* =64, The
number of iterations is denoted by 7, with /=0 being the
preliminary solution. Results using both arc length (& =0)
and a combination of arc length and curvatures (w =0.25)
are shown.

Convergence of the iterative procedure is defined using
tolerance values for ¢, and ¢,. We remark that the com-
puted values of #, and ¢, do not depend on any reference
solution but reflect a change in the distribution of the points
with respect to the measure as given by Eq. (3.8). Not ali
choices of w lead to a converged solution. For example, in
Table V we see that for w = 0 the values of ¢, and ¢, do not
decrease significantly in the first few iterates, On the other
hand, the results of Table VI show that for =025 a
tolerance vatue of ¢ =0.04 would lead to convergence after
I=>5 iterates of the AMG.

The AMG procedure leads to an improved approxima-
tion of the scattering solution as indicated by the computed
scattering length o and the L:-norm of the error function
14€24 ;.

TABLE V1I

Collocation Solution with (74 2)* =64 Using
ew =0 and 7 Iterates of the AMG

I « 1421, o PR

0 359 16.3 30(-2)  30(—2)
1 12.1 11.4 30(~2)  30(=2)
2 94 10.5 29(=2)  29(-2)
3 116 10.5 28(—2)  29(-2)
4 12.1 10.5 28(~2) 29(-2)
5 127 10.5 28(-2)  29(-2)

6. CONCLUSIONS

The projection method using cubic B-splines has been
used to solve the two-dimensional Faddeev integral
equation. This approach reduces the problem to one of
evaluating multidimensional integrals and solving a system
of algebraic equations. The number of algebraic equations
increases with the number of grid points. Results have been
obtained using both Galerkin and collocation methods. On
a coarse grid the Galerkin technique gives the most accurate
numerical solutions, but this advantage is offset by the fact
that the method requires the evaluation of higher dimen-
sional integrals. In practice these integrals are evaluated by
numerical quadrature.

An alternative approach is to improve the accuracy of the
collocation method by using an AMG technique. Since
the solution function is approximated as a bicubic spline,
the nodal points can be equi-distributed with respect to a
measure that combines both arc length and curvatures of
the approximate solution to the integral equation. The
AMG technique has been applied iteratively to obtain a
converged solution. The iterative procedure does not
necessarily increase the computer time because the trunca-
tion error may be improved so that accurate solutions can
be obtained with a smaller number of grid points. Indeed,
for the example considered in this paper it is possible to
improve the accuracy of the approximate solution on a
coarse grid.

We remark that the AMG technique has not been applied
to the Galerkin method because this method requires the
evaluation of higher dimenstonal integrals, and, uniike the
collocation method, these integrals are costly to evaluate.

The cubic-spline projection method has been shown to be
both an accurate and an efficient method for solving the
two-dimensional Faddeev integral equation at bound state
and zero scattering energies. For scattering energies above
the three-body breakup threshold the kernel of the Faddeev
integral equation contains logarithmic singularities [9].
An important feature of the present method is that the
multidimensionai integrals can be evaluated accurately
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using standard numerical guadratures. Thus logarithmic
singularities in the kernel do not pose any major difficulty.
In the case of realistic forces involving many partial waves
it is known that the solution of the Faddeev equation does
result in large systems of algebraic equations. An approach
that seeks to reduce the number of algebraic equations, such
as the method described in this paper, should be of value in
the numerical treatment of such problems. Finally, the cubic
spline-projection method can be extended to treat integral
equations in more than two dimensions. Integral equations
of this type arise, for example, in many-body scattering
theory.
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